Introducing Termination Probabilities to HMM

نویسندگان

  • Yousef Al-Ohali
  • Mohamed Cheriet
  • Ching Y. Suen
چکیده

HMM is very well suited to model sequential patterns. This paper introduces a new parameter, the termination probability, to HMM. The new parameter provides a better initialization for the backward variable during the training and evaluation phases. This improves the discriminatory power of HMM by allowing the system to judge the input observation sequence based on where it is completed. Experimental results show the improvement achieved by this parameter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

Thai Word Recognition Using Hybrid MLP-HMM

The Hidden Markov Model (HMM) is a popular model for speech recognition systems. However, one of the difficulties in applying HMM is the estimation of the emission probabilities for constructing the Gaussian Mixture Models (GMMs). In this paper, we propose a method to estimate the state emission probabilities in HMM framework using Artificial Neural Networks (ANNs), particularly the Multi-Layer...

متن کامل

Information Theoretic Analysis of DNN-HMM Acoustic Modeling

We propose an information theoretic framework for quantitative assessment of acoustic modeling for hidden Markov model (HMM) based automatic speech recognition (ASR). Acoustic modeling yields the probabilities of HMM sub-word states for a short temporal window of speech acoustic features. We cast ASR as a communication channel where the input sub-word probabilities convey the information about ...

متن کامل

Incorporation of HMM output constraints in hybrid NN/HMM systems during training

This paper describes a method to incorporate the HMM output constraints in frame based hybrid NN/HMM systems during training. While usually the NN parameters are adjusted to maximize the cross-entropy between the frame target probabilities and the network predictions assuming statistically independent outputs in time, in the approach described here the full likelihood of the utterance(s) using ...

متن کامل

Truncating Shortest Path Search for Efficient Map-Matching

We study the problem of map-matching, or finding the route on a road network from a trace of noisy and sparse observed points, particularly when a huge number of points are given. The algorithms based on Hidden Markov Models (HMMs) are known to achieve high accuracy for noisy and sparse data but suffer from high computational cost. We find that the bottleneck of the HMM-based map-matching is in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002